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ABSTRACT
Three-dimensional nonlinear finite element simulations are becoming increasingly feasible for geotechnical applications. This paper
presents a versatile framework that helps streamline the use of three-dimensional finite elements for analyses of soil and soil-structure
systems. In this regard, a Windows-based graphical-user-interface OpenSeesPL is developed for footing/pile-ground interaction
analyses. OpenSeesPL allows convenient studies of three-dimensional seismic (earthquake) and/or push-over pile analyses. Various
ground modification scenarios may be also addressed by appropriate specification of the material within the pile zone. The presented
analysis scenarios aim to highlight the analysis framework capabilities and range of potential applications.

RESUME
Les simulations tri-dimensionelles nonlinéaires par éléments finis deviennent de plus en plus réalisables dans le domaine de la
géotechnique. Cet article présente un cadre de calcul polyvalent qui facilite I’ utilisation d’éléments finis tri-dimensionelles pour les
analyses de sol et de systemes sol-structure. A cet égard, un interface d’utilisateur graphique de calcul basé sur Windows,
OpenSeesPL, est dévelopé pour les analyses d’intéraction sol-fondation/pieux. OpenSeesPL permets d’étudier le comportement des
systémes de fondation sur pieux soumis a des charges sismiques dynamiques et/ou des charges quasi statiques. Différents scénarios
de modification des sols peuvent étre aussi examinés par spécification appropriée des matériaux dans la zone des fondations a pieux.

Les scénarios de modélisation présentés visent a mettre en évidence les capacités du cadre de calcul et le spectre d’applications

potentielles.
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1 INTRODUCTION

Soil-Foundation-Structure Interaction (SFSI) is an important
aspect affecting the performance of structures such as buildings
and bridges. With the recent developments in numerical
modeling techniques and high-speed efficient computers, linear
and nonlinear three-dimensional (3D) finite-element (FE)
methods are becoming an effective technique for understanding
the involved SFSI mechanisms. Particularly suited to seismic
applications, the open-source computational platform OpenSees
(Mazzoni et al. 2006) provides such 3D simulation capabilities.

However, in conducting numerical simulations, preparation of
the FE data file is a step that requires careful attention. A minor
oversight might go undetected, leading to erroneous results.
Numerous opportunities for such small errors abound, and a
user-friendly interface can significantly alleviate this problem,
and allow for high efficiency and much increased confidence.

On this basis, a user-interface “OpenSeesPL” is under
development (Figures 1 and 2), to allow for the execution of
push-over and seismic footing/pile-ground simulations (Lu et al.
2006, https://neesforge.nees.org/projects/openseespl/). Various
ground modification scenarios may be also studied by
appropriate specification of the material within the pile zone.

In the following sections, an overview of OpenSeesPL
capabilities is presented, followed by a range of potential
simulation scenarios. As such, the aim is to highlight the analysis
framework capabilities and range of potential applications.

2 COMPUTATIONAL FRAMEWORK

The open-source platform OpenSees (http://opensees.
berkeley.edu, Mazzoni et al. 2006) is employed
throughout. OpenSees is a software framework for
developing applications to simulate the performance of
structural and geotechnical systems subjected to
earthquakes. OpenSees can be used to study the
performance of infrastructure facilities (bridges, buildings,
etc.) under static loads, and during earthquake events.

In the OpenSees platform, a wide range of linear and
nonlinear soil and structural elements is available. The
reported pre- and post-processing scenarios are generated
by the user interface OpenSeesPL (http://cyclic.ucsd.edu/
openseespl) which allows for: i) convenient generation of
the mesh and associated boundary conditions and loading
parameters (FE input file), ii) execution of the
computations using the OpenSees platform, and iii)
graphical display of the results for the footing/pile and the
ground system.

3. MODELING CONFIGURATIONS

The OpenSeesPL graphical interface (pre- and post-
processor) is focused on facilitating a wide class of 3D
studies  (with  additional capabilities yet under
development). The basic default configuration is in the



form of a 3-dimensional soil island with the possibility of
including a footing/pile/pile-group model. Full-mesh, half-mesh,
or quarter mesh configurations may be analyzed, as dictated by
symmetry considerations (Figures 3-5).
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Figure. 1. OpenSeesPL user interface with mesh showing a
circular pile in level ground (Lu et al. 2006).
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Figure. 2. Push-over analysis and deformed mesh window in
OpenSeesPL (Lu et al. 2006).

Figure 3. Full 3D mesh-pile configuration.

Figure 4. Half-3D mesh-pile configuration.

Figure 5. Quarter 3D mesh-pile configuration.

In OpenSeesPL, the mesh configuration may be easily
modified to: i) change the pile diameter, depth of
embedment, height above ground surface, and number of
pile beam-column elements, and ii) refine the ground mesh
domain in the lateral and vertical directions (Figure 6).
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Figure 6. Mesh refinement in OpenSeesPL.

Square or circular pile cross-sections may be specified.
As such, the pile model may be employed to study the
response of a tall building that can be modeled as a
bending beam (Figure 7). Shallow foundations (rigid) in
square or circular configurations may be also conveniently
analyzed (Figure 8).

Independent control over the pile zone material may be
exercised, allowing for a wide range of ground
modifications studies (Figure 9). Of particular importance
and significance in these scenarios is the ability to simulate
the presence of a mild infinite-slope configuration,
allowing estimates of accumulated ground deformation,
efficacy of a deployed liquefaction countermeasure, pile-
pinning effects, and liquefaction-induced lateral pile loads
and resulting moments/stresses.



Figure 7. Building modeled as a bending beam on a shallow

foundation embedded in the ground.
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Figure 8. Circular shallow foundation model.

Material for the pile-soil interfacing zone may be also
specified by the user, permitting scenarios such as analysis of
cylindrical foundations, and/or control over pile-soil friction and
potential no-tension interaction during lateral deformation
(Figure 10). In addition to the footing and single pile
configurations, pile groups may be also represented in the free
head or fixed head configurations (Figure 11).
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Figure 9. Control over specification of soil inside the pile zone.

4. LOAD APPLICATION

Static and dynamic loads may be applied. For static
loading, push-over type analyses may be conducted where
the loads/moments are directly applied to the pile top or
footing surface, in force or in displacement modes (Figure
12). Capabilities are provided for monotonic loading,
cyclic loading, and for user-defined load patterns to be
uploaded as text file. Push-over along the finite element
mesh boundary may be also specified, for instance to
explore loads on pile foundations due to lateral ground
displacement (Figure 13).
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Figure 10. Control over specification of pile-soil interfacing zone.

Figure 11. Large pile group model (1/2 mesh configuration).

Dynamic and earthquake shaking may be also imparted
along the soil lower boundary (base). Shaking is allowed
in 3D with a small set of available motions, and a
capability to upload user specified base shaking excitation
(Figure 14).
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Figure 12. Push-over load application in force or displacement
modes.

Figure 13. Push-over for lateral ground displacement studies.
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Figure 14. User-uploaded earthquake base excitation.
5 SOIL MESH BOUNDARY CONDITIONS

For static loading on the pile or footing system, a fixed boundary
condition may be specified along the base and lateral boundaries
of the soil mesh. For dynamic/earthquake excitation, ground
motion is specified uniformly along the soil model base as
mentioned earlier. Along the lateral boundaries, users can choose
between fixed, shear beam, or periodic boundary conditions
(Figure 15).

Sl rcdel Input [E=m|mem| =)
Pl Delinition

rile Poremeters_. | Soil Poramesters... |

rooh Foremeters. | Anetreis Sptuons. |
PEeR——
= Pushower [ Esine Fesoim. |
P S ———— Ea—

— Beose Shaking
- |

RO Twne - T Fixed wert

= —
[Fep=red 0.2a sinuscicsl moton I
[Ferneren 0 7o sinnenionl monnn =1
[Torered D.2a sinusoical motion = |
[ [ [
o o o

I I I
hocol Inclinstion slong Langitudinal Dirootion
Siround Surface Inclination Ancle (0 30 deol =]
o

“ihole kodel Inclination Anale (0 10 deo

Figure 15. Specification of soil lateral boundary conditions.
6 SOIL PROPERTIES

Linear and nonlinear elasto-plastic cyclic soil modeling
capabilities are available. For nonlinear soil response,
pressure independent (Mises or J,) plasticity and pressure
dependent (Drucker-Prager cone yield surface) models are
available (Elgamal et al. 2003, Yang et al. 2003). The
available solid-fluid coupled formulation allows for
conducting liquefaction-type analyses (Yang et al. 2003).
Selection may be made from a set of available soil model
properties, or by user-defined input modeling parameters
(Figure 16).
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Figure 16. Menu of soil properties, and user-defined parameters.
7 BEAM-COLUMN ELEMENTS
OpenSeesPL  employs state-of-the-are  beam-column

element formulations through the FE analysis engine
OpenSees (Mazzoni et. al 2006). In addition to static




analysis, these elements allow for dynamic/cyclic earthquake-
type simulations. Linear, bilinear hysteretic, and nonlinear fiber
element formulations are available (Mazzoni et al. 2006), based
on steel and concrete cyclic constitutive models. Using
OpenSeesPL, the beam column modeling properties may be
specified, and a display of the resulting moment-curvature
relationship can be generated as shown in Figure 17.

8. VISCOUS DAMPING

For dynamic computations, viscous damping at the level of the
entire model may be specified conveniently. A dedicated
interface allows users to define damping ratios at two different
frequencies, according to the Rayleigh mass-stiffness damping
logic. Conversely, the mass and stiffness matrix viscous damping
multipliers may be specified directly (Figure 18).

9. POST-PROCESSING

Upon specification of the model parameters, the interface
accesses the FE OpenSees platform to conduct the computations.
If needed, own weight is applied first (soil domain followed by
super-structure), nonlinear material properties are activated, and
the specified loading scenario is finally executed (static or
dynamic/earthquake loading).
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Figure 17. Fiber section and moment-curvature relationship.
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Figure 18. Control over Rayleigh mass, stiffness viscous damping.

Upon completion of the computational phase, display
of the results is initiated by OpenSeesPL. The structure
response may be viewed as time histories and/or as
response at various levels of the applied static load
(Figures 19 and 20). The deformed mesh may be also
viewed (Figures 2, 11), with capabilities for animation and
display of conditions after application of own weight only,
and after execution of the static/dynamic load
computations. Contour quantities such as displacement,
strain, stress, pore pressure, and stress-ratio (stress-state
relative to failure condition) may be viewed (Figure 13).
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Figure 19. Display of response time histories.
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10. EXAMPLE SIMULATION SCENARIOS

I. Elgamal and Lu (2009a) conducted a pilot study of lateral
loading on a 3x3 pile group. A single-pile FE model was first
calibrated in the linear range based on the 3D analytical solution
of Abedzadeh and Pak (2004). Response of this linear pile in an
idealized nonlinear undrained-clay material was then computed
and compared to the linear solution. The corresponding 3x3 pile
group response was also addressed, as a function of pile-spacing
for the above linear and nonlinear soil cases (Figures 21 and 22).
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Figure 21. FE mesh of 3x3 pile group (1/2 mesh due to symmetry).

1. In a remediated area of large spatial extent (Figure 23), the
periodic boundary technique offers an effective approach for
conducting 3D analyses (i.e., symmetry allows the investigation
of a representative remediated “cell”). On this basis, Elgamal et
al. (2009b) conducted a 3D FE ground modification parametric
study, to evaluate mitigation of liquefaction-induced lateral soil
deformation by the stone column and the pile pinning
approaches. An effective-stress plasticity-based formulation was
employed. Using OpenSeesPL, a half-mesh was studied due to
symmetry (Figure 23). A 10 m depth mildly-inclined (4 degrees)
saturated layer was analyzed, with the remediated zone diameter
maintained at 0.6 m throughout. Liquefaction-induced lateral
deformation and remediation procedures for mildly sloping sand
and silt strata were investigated under the action of an applied
earthquake excitation. The extent of deployed remediation (area
replacement ratio) and effect of the installed stone column
permeability were analyzed. Effect of lateral spreading on the
pile response was also investigated.
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Figure 22. Plan view of displacement around piles for 5 (above) and
7 (below) pile-diameter spacing (1/2 mesh configuration, with red
color denoting the large displacement zones).
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Figure 23. Ground modification study for mitigation of liquefaction-
induced lateral deformation (above showing pattern of stone column
construction, and periodic boundary logic, and below showing plan
and side-views of FE mesh (1/2 mesh due to symmetry).

11. SUMMARY AND CONCLUSIONS

A robust and versatile framework for computational
analysis of pile-ground systems was presented. The open-
source platform OpenSees is employed throughout. For
illustration, scenarios of lateral response of pile groups, as
well as ground remediation against liquefaction-induced
lateral spreading were discussed. The conducted
investigations aim to highlight the analysis framework
capabilities and range of potential applications.
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