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Abstract: In saturated clean medium-to-dense cohesionless soils, liquefaction-induced shear deformation is observed to accumulate in
a cycle-by-cycle pattern �cyclic mobility�. Much of the shear strain accumulation occurs rapidly during the transition from contraction to
dilation �near the phase transformation surface� at a nearly constant low shear stress and effective confining pressure. Such a stress state
is difficult to employ as a basis for predicting the associated magnitude of accumulated permanent shear strain. In this study, a more
convenient approach is adopted in which the domain of large shear strain is directly defined by strain space parameters. The observed
cyclic shear deformation is accounted for by enlargement and/or translation of this domain in deviatoric strain space. In this paper, the
model formulation details involved are presented and discussed. A calibration phase is also described based on data from laboratory
sample tests and dynamic centrifuge experiments �for Nevada sand at a relative density of about 40%�.
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Introduction

In saturated clean medium-to-dense sands �relative densities Dr

of about 40% or above, Lambe and Whitman 1969�, the mecha-
nism of liquefaction-induced cyclic mobility may be illustrated by
the undrained stress-controlled simple shear response of Fig. 1
�Arulmoli et al. 1992�. Fig. 1 shows the following:
1. Cycle-by-cycle degradation in shear stiffness manifested by

the occurrence of increasingly larger shear strain excursions;
2. A major portion of the large cyclic shear deformation rapidly

developing at nearly constant, low shear stress and effective
confinement; and

3. A regain of shear stiffness and strength following these large
shear strain excursions, along with an increase in effective
confinement �due to dilatancy�.

The response mechanism in Fig. 1 is representative of a large
number of undrained laboratory tests on Nevada sand with Dr of
about 40% and above �Arulmoli et al. 1992�. Early pioneering
studies �Seed and Lee 1966; Castro 1969; Casagrande 1975; Seed
1979� described this pattern of response as a mechanism of cyclic
mobility or cyclic liquefaction �National Research Council 1985�.

For the important situations of lateral spreading or biased
strain accumulation due to the superimposition of static shear
stress �e.g., embankment slopes, below foundations, behind re-
taining walls, etc.�, cyclic mobility may play a dominant role �see,

e.g., Dobry et al. 1995; Dobry and Abdoun 1998; Balakrishnan
and Kutter 1999�. The results of an undrained triaxial test with
static shear stress bias �Fig. 2� �Arulmoli et al. 1992� show a net
increment of permanent strain accumulates in a preferred ‘‘down-
slope’’ direction on a cycle-by-cycle basis. Modeling the magni-
tude of such increments is of utmost importance in determining
the total accumulated permanent deformation �Iai 1998; Dafalias
and Manzari 1999; Li et al. 2000�.

A number of constitutive models have been developed to
simulate cyclic mobility and/or flow-liquefaction soil response
�Prevost 1985; Lacy 1986; Pastor and Zienkiewicz 1986; Wang
et al. 1990; Iai 1991; Proubet 1991; Bardet et al. 1993; Jefferies
1993; Anandarajah 1993; Aubry et al. 1993; Muraleetharan et al.
1994; Byrne and McIntyre 1994; Tateishi et al. 1995; Borja et al.
1999; Papadimitriou et al. 2001; Arduino et al. 2001�. Among the
notable recent advances is the successful implementation of the
state-dependent-dilatancy concept �Manzari and Dafalias 1997;
Cubrinovski and Ishihara 1998a,b; Li and Dafalias 2000�. This
concept is implemented by explicit incorporation of the void ratio
into the constitutive model, which allows the various soil re-
sponse characteristics �contraction/dilation, cyclic-mobility/flow
liquefaction� to be elegantly reproduced within a unified plasticity
framework.

Currently, reliable computational modeling of the accumulated
shear deformation associated with cyclic mobility still remains a
major challenge. As indicated above, a major portion of these
deformations develops at a state of low nearly constant shear
stress and effective confinement �Figs. 1 and 2�. This minimal
change in stress state at very low confinement levels poses a
significant challenge to reliably reproducing the associated shear
deformation �using traditional stress–space models�. Therefore,
an effort is made in this study to model such deformations di-
rectly by a strain–space yield domain, within classical multisur-
face �stress–space� plasticity formulation �Parra 1996; Yang
2000�. The observed cyclic shear deformation patterns are then
accounted for by enlargement and/or translation of this domain in
strain space.

It is of interest to note that stress– and strain–space formula-
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tions have been combined in earlier studies. For instance, in a
model developed for concrete materials, Bazant and Kim �1979�
used a stress–space loading function for plastic deformation and a
strain–space counterpart for fracturing �strain-softening� defor-
mation. In our case, since the micromechanics governing accu-
mulation of cyclic shear deformation �Figs. 1 and 2� remain a
topic of research, the strain–space mechanism introduced is a
phenomenological approach that allows reproducing the experi-
mentally observed response.

The constitutive model developed was incorporated into a
solid–fluid fully coupled finite element �FE� code �Chan 1988;
Parra 1996�. Model calibration was carried out for Nevada sand at
about 40% Dr , based on �i� a series of monotonic and cyclic
laboratory tests �Arulmoli et al. 1992� and �ii� level-ground and
infinite-slope centrifuge model simulations �Taboada 1995; Dobry
et al. 1995�. In the following, the formulation of this computa-
tional framework and the calibration process are presented and
discussed.

Constitutive Model

The main effort reported here is concerned with details of the
mechanisms introduced for simulating cyclic plastic shear–strain
accumulation. First, we present the necessary components of the
classical stress–space formulation based on the original
multisurface-plasticity framework of Prevost �1985�. Thereafter,
discussions are focused on a new nonassociative flow rule and the
strain–space mechanism �Parra 1996; Yang 2000�, the key ele-
ments in reproducing the salient cyclic mobility features in Figs. 1
and 2. Here, the sign convention adopted is such that volumetric
stresses/strains are positive in compression.

Yield Function

Following standard convention, it is assumed that material elas-
ticity is linear and isotropic, and that nonlinearity and anisotropy
result from plasticity �Hill 1950�. The yield function �Fig. 3� is
selected as a conical surface in principal stress space �Prevost
1985; Lacy 1986�:

f � 3
2�s��p��p0����:�s��p��p0�����M 2�p��p0��2�0

(1)

in the domain p��0, where s����p�� is the deviatoric stress
tensor ����effective Cauchy stress tensor; ��second-order iden-
tity tensor�; p��mean effective stress; p0��a small positive con-
stant �1.0 kPa in this paper� such that the yield surface size re-
mains finite at p��0 �for numerical convenience and to avoid
ambiguity in defining the yield surface normal at the yield surface
apex�; ��a second-order deviatoric tensor that defines the yield
surface center in deviatoric stress subspace, M defines the yield
surface size; and ‘‘:’’ denotes a doubly contracted tensor product.
In the context of multisurface plasticity �Iwan 1967; Mroz 1967;
Prevost 1985�, the hardening zone is defined by a number of
similar yield surfaces �Fig. 3� with a common apex �at �p0� along
the hydrostatic axis�. The outermost surface is designated as the
failure surface, the size of which (M f) is related to the friction
angle � by M f�6 sin �/(3�sin �) �Chen and Mizuno 1990�.

As described by Prevost �1985�, the yield surfaces may be
initially configured with nonzero � to account for shear strength
difference between triaxial compression and extension. However,
it is realized that the Lode angle effect is not incorporated into the
current model since the yield function �Eq. �1�� does not include
the third stress invariant. Load paths that depend significantly on
this effect will not be reproduced satisfactorily. Effort is currently
being directed toward inclusion of the third stress invariant in the
yield function.

Fig. 1. Stress–strain and stress–path response for Nevada sand (Dr

�60%) in a stress-controlled, undrained cyclic simple shear test
�Arulmoli et al. 1992�

Fig. 2. Excess-pore-pressure and stress–strain histories in an un-
drained, anisotropically consolidated stress-controlled cyclic triaxial
test of Nevada sand at Dr�40% �stress bias 21.5 kPa �Arulmoli et al.
1992��

Fig. 3. Conical yield surfaces in principal stress space and deviatoric
plane �after Prevost 1985, Parra 1996, and Yang 2000�
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Shear Stress–Strain Response

In geotechnical engineering practice, nonlinear shear behavior is
commonly described by a shear stress–strain backbone curve
�Kramer 1996�. The backbone curve at a given reference confine-
ment pr� can be approximated by the hyperbolic formula �Kond-
ner 1963; Duncan and Chang 1970; see Fig. 4�:

��Gr	/�1�	/	r� (2)

where � and 	�octahedral shear stress and strain, respectively;
Gr�low-strain shear modulus at pr� �Fig. 4�; and 	 r��max /Gr , in
which �max is the maximum shear strength when 	 approaches 
.
In order to reach the maximum shear strength at finite strain, the
hyperbolic curve is often capped at � f��max �Fig. 4�. During the
calibration process �see ‘‘Model Calibration’’�, � f was selected to
correspond to shear strain 	 of 10% at pr��80 kPa.

Within the framework of multisurface plasticity, the hyper-
bolic backbone curve �Eq. �2�� is replaced by a piecewise linear
approximation �Fig. 4�. Each linear segment �Fig. 4� represents
the domain of a yield surface f m , characterized by elastoplastic
�tangent� shear modulus Hm and size M m , for m
�1,2, . . . ,NYS, where NYS is the total number of yield surfaces
�Prevost 1985�. At the reference confinement pr� , Hm is conve-
niently defined by �see Fig. 4�:

Hm�2��m�1��m�/�	m�1�	m� (3)

with HNYS�0. Using Eq. �1�, the size of surface f m is now dic-
tated by �see Fig. 4�:

M m�3�m /�2�pr��p0�� (4)

with M NYS�M f and �NYS�� f .
Finally, low-strain shear modulus G is assumed to vary with

confinement p� as follows �Prevost 1985�:

G�Gr��p��p0��/�pr��p0���n (5)

where n�material parameter ��0.5 typically for sand; Kramer
1996�. The tangent shear moduli �Eq. �3�� were assumed to follow
the same confinement dependence rule �Eq. �5��. Based on elas-
ticity theory, the bulk modulus of the soil skeleton, B, is defined
by B�2G(1��)/(3�6�), where � is the Poisson ratio.

Hardening Rule

Following Mroz �1967� and Prevost �1985�, a purely deviatoric
kinematic hardening rule was employed to generate hysteretic
response. In our numerical implementation experience, the origi-

nal surface-translation hardening rule �Mroz 1967� was found to
demand a high level of computational effort �particularly at low
confinement levels where yield surfaces are of increasingly small
size in the deviatoric plane; Fig. 3�. In such cases, even with
relatively small stress increments, the updated stress state may
still fall outside the trajectory of surface translation, and the con-
sistency condition could not be satisfied. Use of smaller load in-
crements to remedy this problem was found to be prohibitively
expensive �e.g., in boundary value problem FE computations�,
and sometimes practically impossible. Thus, in order to enhance
computational efficiency, a new yield surface translation rule was
developed �Parra 1996�. This new logic maintains the Mroz
�1967� concept of conjugate-point contact.

Flow Rule

We define Q and P as the outer normal to the yield surface and
the plastic potential surface, respectively. These tensors may be
conveniently decomposed into deviatoric and volumetric compo-
nents, giving Q�Q��Q�� and P�P��P�� �Prevost 1985�.
Nonassociativity of the plastic flow is restricted to its volumetric
component �Prevost 1985�, i.e., Q��P� and P��Q�.

Liquefaction studies �Ishihara et al. 1975� have established the
concept of the phase transformation �PT� surface �Fig. 5�. Under
undrained conditions, shear loading inside �or outside� the PT
surface is accompanied by a tendency of volume contraction �or
dilation�, resulting in increased �or decreased� pore pressure and
decreased �or increased� p� �Fig. 5�. The relative location of the
stress state with respect to the PT surface may be inferred �Pre-

Fig. 4. Hyperbolic backbone curve for soil nonlinear shear stress–
strain response and piecewise-linear representation in multisurface
plasticity �after Prevost 1985 and Parra 1996�

Fig. 5. Schematic of constitutive model response showing �a� octa-
hedral stress �, effective confinement p� response, �b� octahedral
stress �, octahedral strain 	 response, and �c� configuration of yield
domain
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vost 1985� from the stress ratio ��3(s:s)/2/(p��p0�). Desig-
nating PT as the stress ratio along the PT surface, it follows that
�PT �or �PT) if the stress state is inside �or outside� the PT
surface.

In our model, depending on the value of  and the sign of ̇
�the time rate of �, distinct contractive/dilative �dilatancy� be-
havior is reproduced by specifying appropriate expressions for
P�. In addition, a neutral phase (P��0, phase 1–2 in Fig. 5� is
proposed between the contraction (P��0, phase 0–1� and the
dilation (P��0, phase 2–3� phases. This neutral phase conve-
niently allows one to model the accumulation of highly yielded
shear strain, as will be discussed below.

Contractive Phase „Phases 0–1, 3–4, and 4–5 in Fig. 5…
Shear-induced contraction occurs inside the PT surface (
�PT), as well as outside (�PT) when ̇�0. Based on ex-
perimental observations �e.g., by Ishihara et al. 1975; Ladd et al.
1977� and micromechanical explanations �Nemat-Nasser and To-
bita 1982; Papadimitriou et al. 2001�, the rate of contraction is
dictated to a significant extent by preceding dilation phase�s�.
Dafalias and Manzari �1999� addressed this important aspect in
their bounding-surface sand model by incorporating a second-
order fabric tensor in the dilatancy parameter �equivalent to P�
here� as a function of the plastic volumetric strain �v

p accumulated
during dilation. Alternatively, Papadimitriou et al. �2001� defined
the plastic modulus as a scalar function of �v

p . Following their
approaches, a simple version is adopted here by specifying P� as
a scalar function of �v

p . In particular, the contraction flow rule is
defined by

P���1�sign� ̇ �/PT��c1�c2�c� (6)

where c1 and c2�positive calibration constants that dictate the
rate of contraction �or excess pore pressure increase�; and �c is a
non-negative scalar governed by the following rate equation:

�̇c�� � �̇v
p ��c�0 or � �̇v

p�0 �

0 �otherwise�
(7)

where �̇v
p�rate of plastic volumetric strain. In other words, �c

increases only during dilation and decreases during subsequent
unloading �contraction�, until it reaches zero �in phase 0–1 in Fig.
5, since no prior dilation has taken place; �c remains zero�. Thus,
a stronger dilation phase �e.g., phase 2–3� results in a higher rate
of contraction upon unloading �phase 3–4�.

Dilative Phase „Phases 2–3 and 6–7 in Fig. 5…
Dilation appears only due to shear loading outside the PT surface
(�PT with ̇�0), and is defined here by

P���1�/PT�d1�	d�d2 (8)

where d1 and d2�positive calibration constants; and
	d�octahedral shear strain accumulated during this dilation
phase. Eq. �8� dictates a dilation tendency that increases with
accumulated strain 	d , as experimentally observed by Kabila-
many and Ishihara �1990�, and incorporated into the sand model
of Cubrinovski and Ishihara �1998a� using an alternative expres-
sion.

Critical-State Response „beyond Stage 7 in Fig. 5…
Continued dilation �phase 6–7� may result in significant increases
in shear stress and effective confinement. Eventually, the critical
state �Casagrande 1936, 1975; Castro 1969� may be attained,
whereupon further shear deformation continues to develop with-
out additional volume or confinement changes. As mentioned ear-

lier, this response mechanism �represented by the dashed line seg-
ment near stage 7 in Fig. 5�b�� was naturally incorporated into
state �void ratio� dependent soil models �of, e.g., Jefferies 1993;
Manzari and Dafalias 1997; Cubrinovski and Ishihara 1998a; Li
and Dafalias 2000�.

Currently, our model lacks a formal expression for state de-
pendence. However, simple logic has been incorporated to rem-
edy this discrepancy, such that volume remains constant (P�
�0) when the critical state is reached �stage 7, Fig. 5�b��. Fol-
lowing earlier implementations �Jefferies 1993; Manzari and Da-
falias 1997; Li and Dafalias 2000�, the critical state is defined
based on a relationship between volumetric strain �v and effective
confinement p�. This response phase is not further pursued here,
since it was not observed in the available laboratory and centri-
fuge experiments employed for model calibration.

Neutral Phase „Phases 1–2 and 5–6 in Fig. 5…
As the shear stress increases �Fig. 5, phase 0–1�, the stress state
eventually reaches the PT surface (�PT). At sufficiently high
p� levels, dilation �phase 2–3� would follow. However, when p�
is low �e.g., 10 kPa or lower in the calibration phase below; see
Table 1�, a significant amount of permanent shear strain may ac-
cumulate prior to dilation �Figs. 1 and 2�, with minimal changes
in shear stress and p� �implying P��0).

Such a minimal change in the stress state is difficult to employ
as a basis for modeling the associated extent of shear strain accu-
mulation �during which P��0). Hence, for simplicity, P��0 is
maintained during this high yielding phase �phase 1–2�, until a
boundary defined in deviatoric strain space is reached �Fig. 5�c��,
with subsequent dilation thereafter �phase 2–3�. This boundary
defines an initially isotropic domain in deviatoric strain space
�Fig. 5�c�� as a circle of radius 	 s �expressed in terms of octahe-
dral shear strain�. This domain will enlarge or translate depending
on load history, as described below.

Configuration of Yield Domain. The shear strain 	d accumulated
during dilation �phase 2–3, Fig. 5�b�� may enlarge the yield do-
main �Fig. 5�c��. Specifically, enlargement occurs when shear
strain accumulated in the current dilation phase exceeds the maxi-
mum 	d the material has ever experienced before �since phase
2–3 is the first time the material experiences dilation, the domain
enlarges throughout�. This logic preserves the symmetric pattern
of cyclic shear deformation observed in Fig. 1, and may be physi-
cally interpreted as a form of a damage effect.

Table 1. Model Parameters Calibrated for Undrained Dr�40%
Nevada Sand

Main calibration
experiment Parameter Value

CIDC tests Shear modulus, Gr 33.3 MPa
Friction angle, � 31.4°

RPI centrifuge
model 1

Contraction parameter, c1 0.075

RPI centrifuge
model 2

Phase transformation
angle, �PT

26.5°

Dilation parameter, d1 200.0
Dilation parameter, d2 1.5

Contraction parameter, c2 1,000.0
CAUCyclic test py 10.0 kPa

	smax
1.5%

R 1.0
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The presence of superimposed static shear stress results in bi-
ased accumulation of shear deformations, discussed earlier �Fig.
2�. This biased accumulation is achieved through translation of
the yield domain in deviatoric strain space �strain-induced anisot-
ropy; Bazant and Kim 1979�, allowing yield increment 	 r to de-
velop before subsequent dilation �phase 5–6, Fig. 5�. According
to experimentally documented accumulation patterns �Arulmoli
et al. 1992; Ibsen 1994�, strain increment 	 r is proportional to the
level of previous unloading strain �phase 3–4�, limited to a maxi-
mum of R	 s where R is a user-defined constant. Note that trans-
lation of the yield domain continues until the strain accumulated
during dilation reaches the maximum 	d recorded previously
�e.g., phase 2–3 in Fig. 5�b��. Thereafter, the domain enlarges
again �the damage effect described above�.

The initial yield domain size 	 s depends on effective confine-
ment p�. In the current model, this dependence is defined by the
following simple linear relationship �see Fig. 6�:

	s�	smax� py��p�

py�
� (9)

where py� �10 kPa, Table 1� and 	 smax
�1.5% octahedral strain,

Table 1��model constants that may be easily derived from data
such as that shown in Fig. 7. In Fig. 7, the model response under
undrained monotonic loading conditions at various low confine-
ment levels clearly indicates the influence of confinement on the
extent of accumulated shear strain. Other forms of confinement
dependence may easily be prescribed, as dictated by available
experimental data.

In Fig. 7, model response under drained monotonic shear load-
ing is also depicted for low confinements �from 1.0 to 10 kPa�.
However, it should be emphasized that drained volumetric re-
sponse at very low confinement levels �Sture et al. 1998� is not
addressed by the current formulation.

Model performance under symmetric cyclic shear loading is
depicted in Fig. 8�a�. Fig. 8 shows the combined effect of gradual
confinement decrease and dilation history (	d) on shear stress–
strain response. Fig. 8�b� shows that under biased cyclic loading,
the extent of cycle-by-cycle deformation is conveniently simu-
lated via the parameter R.

In summary, the model framework was developed to repro-
duce the observed salient characteristics associated with
liquefaction-induced shear deformation. The incorporated model-
ing mechanisms may be further refined as more reliable data sets
become available. For instance, physically based formulations
may eventually replace the neutral phase, and the setting of P�
�0 within the neutral phase and upon reaching the critical state.

Model Calibration

Calibration was carried out for Nevada sand at about 40% Dr .
This calibration phase included the following:
1. Configuration of yield surfaces �defining Hm and M m) based

on data from a set of monotonic consolidated isotropically
drained compression �CIDC� tests;

2. Evaluation of the strain–space parameters based mainly on
the matching recorded response in a consolidated anisotrop-
ically undrained cyclic �CAUCyclic� test; and

3. Evaluation of the shear-volume coupling �dilatancy� param-
eters through simulations of two dynamic centrifuge tests

Fig. 6. Initial yield domain at low levels of effective confinement

Fig. 7. Undrained and drained monotonic simple shear stress–path
and stress–strain responses showing dependence of initial yield
domain size on effective confinement

Fig. 8. �a� Model simulation of undrained cyclic simple shear re-
sponse �stress-controlled simulation at �15 kPa� and �b� effect of
parameter R on undrained cyclic shear response �stress-controlled
simulations at �15 kPa with 7 kPa static shear–stress bias�

JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING © ASCE / DECEMBER 2003 / 1123



�dealing with liquefied site response and lateral spreading�.
These centrifuge experiment simulations were conducted
using a solid–fluid fully coupled FE program �Parra 1996�
that incorporated the constitutive model developed.

The calibration effort attempted to obtain a satisfactory overall
match of the entire data set employed, with emphasis on
liquefaction-induced shear–strain accumulation mechanisms. In
the following, each experimental phase employed is briefly de-
scribed, along with recorded responses and calibration results. All
calibrated modeling parameters are listed in Table 1.

Drained Monotonic Triaxial Test

The monotonic CIDC test was conducted using Nevada sand at
about 42% initial Dr �Arulmoli et al. 1992�. In this test, the
sample was first isotropically consolidated into an effective con-
fining pressure pr� of 80 kPa. Thereafter, the vertical pressure was
gradually increased, with the lateral confining pressure simulta-
neously decreased, so that pr� remained constant throughout the
test. Thus, the �octahedral� shear stress–strain response recorded
during this test generated a backbone curve at 80 kPa confining
pressure �Fig. 9�.

In order to identify Gr and 	 r , a least-squares curve fitting
procedure was performed �Yang 2000� to match the hyperbolic
relation �Eq. �2�� to the backbone curve �Fig. 9�. Thereafter, yield-
surface parameters Hm and M m were calculated using Eqs. �3�
and �4� for each surface f m �18 surfaces were used, i.e., NYS
�18�. It should be noted that the properties identified also re-
sulted in a reasonable match to two additional CIDC experiments
conducted at pr��40 and 160 kPa �Arulmoli et al. 1992�.

Undrained Cyclic Triaxial Test

An undrained cyclic triaxial test was conducted on Nevada sand
at about 39% Dr �Arulmoli et al. 1992�. The soil sample was first
consolidated to mean effective confinement of 160 kPa, with a 20
kPa difference between the vertical (�1�) and the lateral (�2�
��3�) principal stresses �anisotropic consolidation or stress bias�.
Thereafter, the sample was undrained, and stress-controlled har-
monic load was applied vertically at frequency of about 1 Hz.

The test was numerically simulated �Fig. 10� using the consti-
tutive model. In this test, the level of deformation was consistent

with the centrifuge model 2 experiment discussed below. There-
fore, the parameters controlling cycle-by-cycle accumulation of
shear strain were calibrated by matching the last nine cycles of
this triaxial test �Fig. 10�.

It may be noted that a sudden large pore pressure buildup
occurred during the first two loading cycles of this experiment
�Fig. 10�. However, a second essentially identical triaxial test �test
No. 40–50, Arulmoli et al. 1992� did not display similar behavior
�i.e., pore-pressure buildup was not consistent between these two
experiments, making this part of the data unreliable�. Thus, pore
pressure development was based on the centrifuge data discussed
below, which suggested the gradual buildup mechanism in the
numerical response in Fig. 10.

Centrifuge Experiments

Dobry and Taboada �1994� proposed and conducted a number of
centrifuge model tests to simulate one-dimensional �1-D� dy-
namic response of level and mildly sloping sand sites �Fig. 11�a��.
These tests �Taboada 1995� were performed in a 1-D laminated
container. Nevada sand was used at a Dr in the range of 40–45%.
The centrifuge models attempted to simulate a prototype soil
layer of 10 m depth and infinite lateral extent, with a permeability
coefficient of 3.3�10�3 m/s �Taboada 1995; Dobry et al. 1995�.

The results of two models were employed for model
calibration/verification, including �see Fig. 11�a��:
1. VELACS model 1, representing a level site, subjected

mainly to 2 Hz harmonic base excitation; and
2. VELACS model 2, representing a mildly inclined infinite

slope with an effective inclination angle of about 4°, sub-
jected mainly to 2 Hz harmonic base excitation.

The two tests were simulated using a fully coupled FE pro-
gram that incorporated the constitutive model �Parra 1996; Yang
2000�. Fig. 11�b� shows the finite element mesh, in which a 9–4-

Fig. 9. Backbone curves for Nevada sand at Dr�40% based on
isotropically consolidated drained triaxial tests �Arulmoli et al. 1992�
and hyperbolic representation

Fig. 10. Recorded and computed results of anisotropically consoli-
dated, undrained cyclic triaxial test �Nevada sand at Dr�40%) with
static stress bias �Arulmoli et al. 1992�
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node element �9 nodes for the solid phase, and 4 nodes for the
fluid phase� was employed �Yang 2000�.

In the level-ground case of model 1, the relatively low �sym-
metric� shear strain during shaking �Fig. 12� led to soil response
predominantly below the PT line �i.e., the virtual absence of a
dilative tendency�. Therefore, this model was employed mainly to
calibrate the pore-pressure buildup parameter c1 �Fig. 13�a��.

Minimal permanent displacements occurred in this case, and a
good match was noted between computed and recorded accelera-
tions �Fig. 13�b��.

In model 2, the presence of static driving shear stress due to
gravity �4° inclination� led to shear–strain accumulation and
strong dilative response in the down-slope direction �Fig. 14�. The
results of this model were used to calibrate the dilation param-
eters (PT , d1 , and d2), as well as parameter c2 . As shown in
Fig. 15, the calibrated parameters �Table 1� resulted in a reason-
able match between the recorded and computed lateral displace-
ments at different depths and accelerations �shown at 2.5 m
depth�.

Remark: The numerically predicted settlement due to liquefac-
tion was generally smaller than observations. Models 1 and 2
resulted in settlement in the range of 0.1–0.2 m, which was con-
siderably underpredicted �numerical estimates were less than 0.05
m�. Such large volume changes and their relatively rapid rate of
accumulation �entirely during the shaking phase� are currently the
topic of further investigation.

Fig. 11. Centrifuge configurations of RPI models 1 and 2 �Dobry
et al. 1995�, finite element discretization, and boundary conditions
for numerical simulations

Fig. 12. Computed shear stress strain and stress path at different
depths for VELACS model 1 �level ground�

Fig. 13. Computed and experimental excess pore pressure and ac-
celeration time histories for VELACS model 1 �level ground�

Fig. 14. Computed shear stress strain and stress path at different
depths for VELACS model 2 �4° inclination�
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Summary and Conclusions

A constitutive model was developed for numerical simulation of
cyclic liquefaction response and associated accumulation of cy-
clic shear deformation observed in clean sand and silt. Accuracy
in predicting such deformation is of the utmost practical signifi-
cance in structural/foundation stability and damage assessments.
Within a stress–space plasticity framework, the model employs a
new flow rule and strain–space parameters to simulate the cyclic
development and evolution of plastic shear strain. Here, the pre-
sentation focused on the development and performance of these
key elements. A calibration phase for medium Nevada sand was
described, based on a set of laboratory sample experiments and
centrifuge liquefaction tests. Overall, the model reproduced the
salient cyclic-mobility response characteristics consistently dis-
played in this experimental data set reasonably well.
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